Bilinearization of Coupled Nonlinear Schrödinger Type Equations: Integrabilty and Solitons

نویسنده

  • K. PORSEZIAN
چکیده

Considering the coupled envelope equations in nonlinear couplers, the question of integrability is attempted. It is explicitly shown that Hirota’s bilinear method is one of the simple and alternative techniques to Painlevé analysis to obtain the integrability conditions of the coupled nonlinear Schrödinger (CNLS) type equations. We also show that the coupled Hirota equation introduced by Tasgal and Potasek is the next hierarchy of the inverse scattering solvable CNLS equation. The results are in agreement with the known results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Coupled Higher-Order Nonlinear Schrödinger Equation Including Higher-Order Bright and Dark Solitons

We suggest a generalized Lax pair on a Hermitian symmetric space to generate a new coupled higher-order nonlinear Schrödinger equation of a dual type which contains both bright and dark soliton equations depending on parameters in the Lax pair. Through the generalized ways of reduction and the scaling transformation for the coupled higher-order nonlinear Schrödinger equation, two integrable typ...

متن کامل

Exact soliton solutions of coupled nonlinear Schrödinger equations: shape-changing collisions, logic gates, and partially coherent solitons.

The different dynamical features underlying soliton interactions in coupled nonlinear Schrödinger equations, which model multimode wave propagation under varied physical situations in nonlinear optics, are studied. In this paper, by explicitly constructing multisoliton solutions (up to four-soliton solutions) for two-coupled and arbitrary N-coupled nonlinear Schrödinger equations using the Hiro...

متن کامل

Instabilities of Multihump Vector Solitons in Coupled Nonlinear Schrödinger Equations

Spectral stability of multihump vector solitons in the Hamiltonian system of coupled nonlinear Schrödinger (NLS) equations is investigated both analytically and numerically. Using the closure theorem for the negative index of the linearized Hamiltonian, we classify all possible bifurcations of unstable eigenvalues in the systems of coupled NLS equations with cubic and saturable nonlinearities. ...

متن کامل

Collision Dynamics of Polarized Solitons in Linearly Coupled Nonlinear Schrödinger Equations

The system of linearly coupled nonlinear Schrödinger equations is solved by a conservative difference scheme in complex arithmetic. The initial condition represents a superposition of two one-soliton solutions of linear polarizations. The head-on and takeover interaction of the solitons and their quasi-particle (QP) behavior is examined in conditions of rotational polarization and gain. We foun...

متن کامل

General N-Dark–Dark Solitons in the Coupled Nonlinear Schrödinger Equations

N-dark–dark solitons in the integrable coupled NLS equations are derived by the KP-hierarchy reduction method. These solitons exist when nonlinearities are all defocusing, or both focusing and defocusing nonlinearities are mixed. When these solitons collide with each other, energies in both components of the solitons completely transmit through. This behavior contrasts collisions of bright–brig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997